PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)
- Veronica Cáceres Cortés
- hace 3 años
- Vistas:
Transcripción
1 PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor llegan en promedio 45 clientes por hora, Se tiene capacidad para atender en promedio a 60 clientes por hora. Se sabe que los clientes esperan en promedio 3 en la cola. Se solicita: a) Tiempo promedio que un cliente pasa en el sistema. b) Número promedio de clientes en la cola. c) Número promedio de clientes en el Sistema en un momento dado. λ= 45 clientes/hora (media de llegada de los clientes)= 45/60 clientes/ µ= 60 clientes/hora (media de servicio a los clientes) = 60/60 clientes/= W q = 3 (tiempo promedio de espera de un cliente en la cola) a) Para calcular el tiempo promedio que un cliente pasa en el Sistema (W s). Lo podemos calcular a partir de W q y µ. W s = W q + 1 = = = 4 μ 1 Es decir en promedio un cliente pasa 4 en el Sistema: distribuidos así 3 pasa esperando en la cola + 1 en servicio. b) Para calcular el número de clientes en la cola (Lq), usaremos la fórmula siguiente: Lq= λ W q. L q = λ W q =0.75 clientes * 3 = 2.25 clientes. Es decir los cálculos nos muestran que en la cola puede haber más de dos clientes en la cola. c) Para calcular cual es el número de clientes en la cola (L s). Lo podemos hacer con la fórmula: L s= λ W s. L S = λ W S = 0.75 cliente 4 = 3 clientes Es decir en promedio hay tres clientes en el sistema, como se nos ha dicho que solo hay un servidor, sabemos que solo un cliente puede estar en servicio, por lo que los demás deben estar en la cola. Esto indica que hay dos clientes en espera.
2 II. Suponga un restaurante de comidas rápidas al cual llegan en promedio 100 clientes por hora. Se tiene capacidad para atender en promedio a 150 clientes por hora Se sabe que los clientes esperan en promedio 2 en la cola Calcule las medidas de desempeño del sistema a) Cuál es la probabilidad que el sistema este ocioso? b) Cuál es la probabilidad que un cliente llegue y tenga que esperar, porque el sistema está ocupado? c) Cuál es el número promedio de clientes en la cola? d) Cuál es la probabilidad que hayan 10 clientes en la cola? λ= 100 clientes/hora (media de llegada de los clientes)= 100/60 clientes/ µ= 150 clientes/hora (media de servicio a los clientes) = 150/60 clientes/= W q = 2 (tiempo promedio de espera de un cliente en la cola) a) Para conocer cuál es la probabilidad de que el sistema este ocioso, primero conoceremos, cual es la probabilidad que esté ocupado o factor de utilización del sistema. ρ = λ cliente/hora =100 = 0.66 = 66.7% este porcentaje representa tiempo μ 150 cliente/hora que el sistema está ocupado. Es decir (1- ρ) representa el tiempo ocioso del sistema, es decir = = 33.3% el sistema permanece ocioso. b) La probabilidad que un cliente llegue y tenga que esperar es suponer que estará como primer cliente en la cola. Usaremos la fórmula: P n = (1 λ μ ) (λ μ )n Para nuestro caso n=1 y la formula se convierte en: P 1 = (1 λ μ ) (λ μ )1 = ( )( )1 = ( )(0.667) = 0.222=22.2% Es decir existe un 22.2% de posibilidad que haya un cliente en la cola esperando ser atendido. c) Ahora requerimos calcular el número de clientes en la línea de espera. L q = λ W q =1.667 clientes * 2 = clientes. 4 clientes en la cola. Es decir existe la posibilidad de llegar a tener un promedio de 4 clientes en la línea de espera.
3 d) La probabilidad de que hayan 10 clientes en la cola, como hemos visto existe un promedio de tener hasta 4 clientes en la cola que hayan más de 4 las probabilidades serán muy pequeñas, para ese cálculo haremos uso de la fórmula que usamos en el inciso b de este mismo ejemplo. P 10 = (1 λ μ ) (λ μ )10 = ( )( )10 = ( )(0.667) 10 = =0.58% (lo cual es casi cero). Es decir es muy remoto o poco probable que pueda haber 10 clientes en la línea de espera. III. Un lavacarro puede atender un auto cada 5 y la tasa media de llegadas es de 9 autos por hora. Obtenga las medidas de desempeño de acuerdo con el modelo M/M/1. Además la probabilidad de tener 0 clientes en el sistema, la probabilidad de tener una cola de más de 3 clientes y la probabilidad de esperar más de 30 en la cola y en el sistema λ= 9 clientes/hora (media de servicio a los clientes) = 0.15 clientes/ µ= 0.2 clientes/ (media de llegada de los clientes) a) Vamos calcular el factor de desempeño del sistema calculando ρ. ρ = λ cliente/ =0.15 = 0.75 = 75%. El sistema está ocupado el 75% del μ 0.20 cliente/ tiempo. O sea pasa un 25% ocioso. Es decir la probabilidad de tener 0 clientes en el sistema es cuando el sistema está vacío y eso puede ocurrir con una probabilidad del 25%. Su cálculo puede hacerse directamente con la fórmula: P 0 = ((1 λ 0 μ ) (λ μ ) = ( ) = 0.25 = 25% 0.2 b) La probabilidad de tener una cola de más de 3 clientes P 0 = (1 λ μ ) (λ μ ) 0 = (0.25)(0.75) 2 = 0.25 P 1 = (1 λ μ ) (λ μ ) 1 = (0.25)(0.75) 1 = P 2 = (1 λ μ ) (λ μ ) 2 = (0.25)(0.75) 2 = P 3 = (1 λ μ ) (λ μ ) 3 = (0.25)(0.75) 3 =
4 La probabilidad que haya más de tres clientes en el Sistema, implica que debemos conocer la Probabilidad que haya cero, uno, dos y tres clientes. La diferencia con 1. Será la probabilidad que hayan más de tres. P(Ls>3)=1 (P 0 + P 1 + P 2 + P 3 )= 1- ( )= = c) La probabilidad de esperar más de 30 en la cola. Primero calcularemos el tiempo promedio que un cliente espera en la cola. W q = λ = 0.15 = 0.15 μ(μ λ) 0.2( ) 0.01 cliente tiene que esperar en la cola) =15 (es el tiempo promedio que un Ahora vamos a calcular tiempo (t) de espera sea mayor de 30. P(W q > t) = ρe μ(1 ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W q > 30) = ρe μ(1 ρ)t =(0.75) e 0.2(1 0.75)30 =(0.75)e -1,5 = (0.75)(0.2231)= =0.167=16.7% (COMO PUEDE VER LA PROBABILIDAD ES BAJA) d) La probabilidad de esperar más de 30 en el Sistema. P(W S > t) = e μ(1 ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W S > 30) = e μ(1 ρ)t = e 0.2(1 0.75)30 =e -1,5 = = =22.3% (COMO PUEDE VER LA PROBABILIDAD ES BAJA, pero es más alta que la probabilidad de que el tiempo promedio que un cliente espere más de 30 en la cola). IV. Un promedio de 10 automóviles por hora llegan a un cajero con un solo servidor que proporciona servicio sin que uno descienda del automóvil. Suponga que el tiempo de servicio promedio por cada cliente es 4, y que tanto los tiempos entre llegadas y los tiempos de servicios son exponenciales. Conteste las preguntas siguientes: a. Cuál es la probabilidad que el cajero esté ocioso? b. Cuál es el número promedio de automóviles que están en la cola del cajero? (se considera que un automóvil que está siendo atendido no está en la cola esperando) c. Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco, (incluyendo el tiempo de servicio)? d. Cuántos clientes atenderá en promedio el cajero por hora? λ= 10 clientes/hora (media de llegada de los clientes) = 1/6 clientes/
5 µ= 1 clientes/4 (media de servicio de los clientes)=1/4 cliente/minuto a) Por tanto ρ = λ = 1/6 = 2 = 66.67% factor de utilización del sistema. Es decir que el μ 1/4 3 sistema permanece ocioso el 33.33%. b) Cuál es el número promedio de automóviles que están en la cola del cajero? L q = λ μ(μ λ) = 1/6 1/4( ) = 4 3 = Puede haber 2 autos en la cola. c) Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco (incluyendo el tiempo de servicio)? Nos preguntan por el tiempo promedio que el cliente pasa en el sistema. W s. W S = 1 μ λ = 1 1 = = 12 pasa el cliente en el sistema /6 1/12 d) Cuántos clientes atenderá en promedio el cajero por hora? Si el cajero siempre estuviera ocupado, atendería un promedio de μ=15 clientes por hora. Según la solución encontrada en el inciso a (1/4*60=15), el cajero está ocupado 2/3 del tiempo. Por tanto dentro de cada hora, el cajero atenderá un promedio de (2/3)(15)= 10 clientes. Esto es ρ*µ= 2/3 * 15 = 10 clientes.
PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)
PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A.. Suponga que en una estación con un solo servidor
V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas
UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE INVESTIGACIÓN DE OPERACIONES II INGENIERIA INDUSTRIAL E INGENIERIA DE SISTEMAS V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas Maestro
Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías
Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede
Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay
Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Procesos Estocásticos de Tiempo Contínuo Práctico Ejercicio 1 Sean X e Y variables
DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software
3 Diseño del Software Traffic Analyzer En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software que analiza el tráfico en redes de telefonía y computadoras, denominado Traffic
TEORIA DE COLAS, FENOMENOS DE ESPERA
Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino
Teoría de Colas o Fenómenos de Espera
Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................
El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2.
ESTUDIO DE OPERACIONES URBANAS MATERIAL REUNIDO POR JAMES S. KANG OTOÑO 2001 Soluciones trabajo 4 3/10/2001 1. Problema 4.12 LO (Pinker, 1994; Kang, 2001) El aeropuerto se puede modelar como un sistema
Análisis de Decisiones II
Tema 14 Distribución de llegadas Poisson, distribución de servicio Exponencial, varios servidores, servicio PEPS, población y cola infinita Objetivo de aprendizaje del tema Al finalizar el tema serás capaz
DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN
TEORIA DE COLAS: Líneas de Espera Claro Ana Milena, Cardona Luz Dary, Ruiz Lina María, Gómez Juan Fernando, Estudiantes Ingeniería Industrial Universidad Católica de Oriente. Mayo 21 de 2011. Resumen:
Teoría de Líneas de Espera
Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:
Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó
Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó Fecha de Entregable 1: 7 de octubre de 2013-12 horas Fecha de Entregable 2 y 3: Lunes 21 de octubre de 2013-12 horas Fecha de Entregable
BLOQUE V Estadística y probabilidad
Pág. de Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,2; 0,2; ; Responde razonadamente
T.1 CONVERGENCIA Y TEOREMAS LÍMITE
T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)
TEORIA DE COLAS SIMULACIÓN DE SISTEMAS
SIMULACIÓN DE SISTEMAS UNIVERSIDAD ALAS PERUANAS FILIAL- ICA Ing. Las LINEAS DE ESPERA, FILAS DE ESPERA o COLAS, son realidades cotidianas: Personas esperando para una caja en un banco, Estudiantes esperando
Unidad V: Líneas de Espera
Unidad V: Líneas de Espera 5.1 Definiciones, características y suposiciones El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que el cliente
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
Ejercicios de Teoría de Colas
Ejercicios de Teoría de Colas Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Demuestra que en una cola M/M/1 se tiene: L = ρ Solución. L = = = = = ρ np n nρ n (1 ρ) nρ n n=1 ρ n ρ
2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K
CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula
SISTEMA CON UN SERVIDOR
TALLER 6 : Problemas de Líneas de Espera. 1.SISTEMA CON UN SERVIDOR. Una compañía estatal tiene un numero de estaciones para el pesado de camiones a lo largo de una gran autopista, para verificar que el
EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB
EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB PROBLEMA 1. El Banco Nacional de Occidente piensa abrir una ventanilla de servicio en automóvil para servicio a los clientes. La gerencia estima que los
Relación de Problemas. Modelos de Probabilidad
Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas
5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.
PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los
EJERCICIOS RESUELTOS TEMA 3
EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar
Práctica 3 Distribuciones de probabilidad
Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos
Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema
Tema 11 Conceptos básicos de Teoría de Colas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar en qué consiste la Teoría de Colas. D.R. Universidad TecMilenio 1 Introducción
PEOBLEMAS RESUELTO DE CADENAS DE MARKOV
PROBLEMAS RESUELTOS DE CADENAS DE MARKOV TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés I. El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un
Ambas componentes del sistema tienen costos asociados que deben de considerarse.
1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares
Tema 5. Variables aleatorias discretas
Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso
PROBLEMAS RESUELTOS DE TRANSPORTES.
PROBLEMAS RESUELTOS DE TRANSPORTES. Prof.: MSc. Julio Rito Vargas Avilés Inv. Operaciones I Ejemplo 1 (Modelo de transporte estándar - equiulibrado) MG Auto Company tiene plantas en Los Ángeles, Detroit
DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA
INVESTIGACIÓN DE OPERACIONES II CADENAS DE MARKOV CADENAS DE MARKOV ERGODICAS CADENA REGULAR DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE MÉTODO ANALÍTICO CADENAS DE MARKOV ABSORVENTES TEORIA DE
FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA
FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA El análisis de Weibull es la técnica mayormente elegida para estimar una probabilidad, basada en datos medidos o asumidos. La distribución
Resolución de problemas. Temas: VOR e ILS
Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR
MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS. AUTOEVALUACIÓN INECUACIONES Y P.L tutor: SEK-CATALUNYA SISTEMA EDUCATIU SEK.
MATEMÀTIQUES 4ESO 14/1 NOM I COGNOMS SEK-CATALUNYA COL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aula INTEL LIGENT AUTOEVALUACIÓN INECUACIONES Y PROGRAMACIÓN LINEAL. Ámbito Científico Técnico Curso: 4ESO
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral
UNIDAD 4. Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos.
UNIDAD 4 Dra. Elena Alfonso Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos. La relación entre la cantidad de factores productivos requerida y la cantidad
Objetivos: Al inalizar la unidad, el alumno:
Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará
Explicación de la tarea 3 Felipe Guerra
Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La
INFERENCIA ESTADÍSTICA
INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas
Redes de Comunicaciones
Redes de Comunicaciones Ejercicios Tema 3. Teletráfico. Dimensionado de Sistemas Ramón Agüero Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY-
LA TECNOLOGÍA COMO HERRAMIENTA DE BANCARIZACIÓN ING. FERNANDO PEÑA PRESIDENTE EJECUTIVO DE BANRURAL
LA TECNOLOGÍA COMO HERRAMIENTA DE BANCARIZACIÓN ING. FERNANDO PEÑA PRESIDENTE EJECUTIVO DE BANRURAL EL RETO GUATEMALA ES UN PAÍS PEQUEÑO CON UNA POBLACIÓN APROXIMADA DE 11.2 MILLONES DE PERSONAS 60% INDÍGENAS
GUÍA RÁPIDA DE PUNTO DE VENTA. SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT. Versión 8.0
GUÍA RÁPIDA DE PUNTO DE VENTA SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT Versión 8.0 National Soft de México Guía rápida para punto de venta En este documento
MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004
MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 EL TIO DE CAMBIO REAL El tipo de cambio nominal expresa el precio de una moneda en términos de otra. or ejemplo, el tipo
IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios
Profesores: Andrés Weintraub, Fabián Medel, Rodrigo Wolf Auxiliares: Juan Neme, Matías Siebert, Paulina Briceño, Rodrigo Arriagada IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios Modelos: 1.- Demanda
Se mezclan las tarjetas de azar y se coloca el mazo boca abajo en la casilla correspondiente.
millatoner games 2006 Juego de ciclismo para 3 a 6 jugadores Elementos del juego 1 tablero de juego (en 4 paneles) 42 fichas de ciclistas de seis colores 1 ficha de ciclista con el maillot arcoiris, que
Documentación del Terminal
Documentación del Terminal 1. Descripción El Programa de Preventa-Autoventa FacturaPlus está diseñado para su utilización en PDAs incluyendo en este paquete además una aplicación para PC con la que gestionar
LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México
LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija
Líneas de espera. Introducción.
Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas
Antes de construir tu base de datos es conveniente saber que tipos de datos vas a almacenar y como distribuirlos.
Microsoft Access es un sistema de gestión de bases de datos para uso personal o de pequeñas organizaciones. En pocas palabras, sirve para manipular información. Antes de construir tu base de datos es conveniente
LEER Y ESCRIBIR ARCHIVOS O FICHEROS EN C. FOPEN, FCLOSE, MODOS DE ACCESO READ, WRITE Y APPEND (CU00536F)
APRENDERAPROGRAMAR.COM LEER Y ESCRIBIR ARCHIVOS O FICHEROS EN C. FOPEN, FCLOSE, MODOS DE ACCESO READ, WRITE Y APPEND (CU00536F) Sección: Cursos Categoría: Curso básico de programación en lenguaje C desde
np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q
52 CAPÍTULO 3. SISTEMAS DE ESPERA Luego: P {N q = n N q > 0} = P n+1 2 = (1 ) n 1, n = 1, 2, (3.33) Nótesequelaprobabilidadqueexistan N probabilidadgeométricaconparámetro n 1,locualesigualaladistribuciónprobabilidad
Fundamentos de los Sistemas Operativos (GII) Examen Final 15 de Junio de 2012 - SEGUNDA PARTE - SOLUCIONES
Calificación 1 Fundamentos de los Sistemas Operativos (GII) Examen Final 15 de Junio de 2012 - SEGUNDA PARTE - 2 3 Nombre SOLUCIONES Grupo Dispone de una hora y media para completar el examen 1 (6.5 puntos)
El Problema del Transporte
ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para
Adivinanza o logaritmos?
Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades
1.3 Números racionales
1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples
Matemáticas Grado 6 Números negativos
Matemáticas Grado 6 Números negativos Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a usar números negativos. Ésta es su oportunidad para ayudarle a practicar esta importante habilidad.
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal
Trabajo y energía: ejercicios resueltos
Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la
2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO
2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 18 Introducción Hasta ahora hemos visto como abrir una imagen para tratarla en Photoshop CS3, y a guardarla en cualquiera de los estados en los que se encuentre en
Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS
Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin
LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )
LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,
Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga
Tema 5: Teoría de colas Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario Conceptos básicos Cola M M Cola M M c Cola M M k Redes de colas Redes de
GENERAR DOCUMENTOS HTML USANDO LENGUAJE PHP. EJERCICIO RESUELTO EJEMPLO SENCILLO. (CU00733B)
APRENDERAPROGRAMAR.COM GENERAR DOCUMENTOS HTML USANDO LENGUAJE PHP. EJERCICIO RESUELTO EJEMPLO SENCILLO. (CU00733B) Sección: Cursos Categoría: Tutorial básico del programador web: HTML desde cero Fecha
2 Teoría de colas o líneas de espera
2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre
1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10
Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...
En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.
Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa
Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1
Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna
GUÍA de creación de pdf
PDF (Portable Document Format, Formato de Documento Portátil) es un formato de documento, desarrollado por Adobe Systems, que se ha convertido en un estándar en las artes gráficas. Las principales ventajas
Institución Educativa Inem Felipe Pérez de Pereira 2012 Estrategia taller. AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10
Grado 10º Tiempo (semanas) GUÍA DE FUNDAMENTACIÓN Institución Educativa AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10 Fecha Real 1 2 3 4 5 6 7 8 9 10 Área/proyecto: es y Mantenimiento
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente
Microeconomía Intermedia
Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 03 La elección óptima del consumidor
Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema
Tema 15 Solución de problemas de líneas de espera mediante WinQSB Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar las características y funcionalidades que ofrece WinQSB
EL MÉTODO DE LA BISECCIÓN
EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que
Adaptación del producto
Adaptación del producto 3 Muchas empresas comienzan su proceso de internacionalización buscando mercados extranjeros para sus productos o servicios existentes. La decisión de entrada se basa en informaciones
INVERSIONES Y MÉTODOS DE VALORACIÓN V.A.N. Y T.I.R.
INVERSIONES Y MÉTODOS DE VALORACIÓN V.A.N. Y T.I.R. Introducción Al decidir realizar una inversión en la empresa se debe contar con la mayor cantidad de información para poder hacerlo minimizando los riesgos.
Ejercicios de Programación Lineal
Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de
Contabilidad Orientada a los Negocios
Tema 5 Introducción Como todos sabemos, al pagar por alguna cosa, cualquiera que esta sea, que jamás haya sido utilizada, se debe desembolsar una cantidad de dinero, esto es porque, al igual que todas
Tema 12: Gestión de existencias. Elvira Carmona Rubio Operaciones administrativas de compraventa
Tema 12: Gestión de existencias Elvira Carmona Rubio Operaciones administrativas de compraventa En esta unidad aprenderemos a: Representar gráficamente los stocks y su evolución en el tiempo. Calcular
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
Modelos Matemáticos de Poblaciones
Capítulo 1 Modelos Matemáticos de Poblaciones 1.1. Introducción Actualmente, en algunos campos de la Ciencia los esfuerzos van dirigidos, dentro de ciertas limitaciones, a conocer el desarrollo de algunos
Para aquellos que tengan conocimientos de Access es lo más parecido a una consulta de referencias cruzadas, pero con más interactividad.
Las tablas dinámicas Crear una tabla dinámica Una tabla dinámica consiste en el resumen de un conjunto de datos, atendiendo a varios criterios de agrupación, representado como una tabla de doble entrada
Problemas + PÁGINA 37
PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,
Metodología CAPÍTULO 3. Alcance
Metodología CAPÍTULO 3 Alcance La investigación se enfocará a los requisitos necesarios para listar en la Bolsa Mexicana de Valores y las principales bolsas de los países pertenecientes al G8. También
JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica
Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la
Métodos generales de generación de variables aleatorias
Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad
En este PDF encontrará los siguientes temas que debe estudiar para la clase:
En este PDF encontrará los siguientes temas que debe estudiar para la clase: Función de oferta, superávit de consumidores y productores, análisis marginal: Costo marginal, Ingreso marginal, Utilidad marginal
Máquinas virtuales (VMWare, Virtual PC, Sandbox. Qué son y para qué sirven. (DV00402A)
aprenderaprogramar.com Máquinas virtuales (VMWare, Virtual PC, Sandbox. Qué son y para qué sirven. (DV00402A) Sección: Divulgación Categoría: Herramientas informáticas Fecha revisión: 2029 Autor: Walter
Por qué es importante la planificación?
Por qué es importante la planificación? La planificación ayuda a los empresarios a mejorar las probabilidades de que la empresa logre sus objetivos. Así como también a identificar problemas claves, oportunidades
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 5: VARIABLES ALEATORIAS Y DISTRIBUCIONES CONTINUAS Profesor: Hugo S. Salinas. Segundo Semestre
El plan de Marketing de una tienda virtual
El plan de Marketing de una tienda virtual Manuel Vizuete Gómez www.marketingycomercio.com Un buen Plan de Marketing tiene en torno a seis partes: Descripción de la Situación actual, Análisis de esa Situación,
d s = 2 Experimento 3
Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición
290 SOBRE LAS FORMAS DE SEGUNDO GRADO.
290 SOBRE LAS FORMAS DE SEGUNDO GRADO. Sobre el númerodeclasesambiguas. 257. Entre todas las clases en un orden dado con determinante dado, las clases ambiguas especialmente demandan un tratamiento mayor,
Macroeconomía Intermedia
Macroeconomía Intermedia Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las
Overall Equipment Effectiveness
Overall Equipment Effectiveness Cuando hablamos de mejora continua en un área de producción o de manufactura el OEE es el indicador clave para medir la eficiencia de una maquina o una línea de trabajo.
Metros y centímetros. Vamos a medir cosas!
Metros y centímetros Vamos a medir cosas! Objetos y cosas que sirven para medir: Autor: Eduard CONNOLLY http://pedagogoterapeuta.blogspot.com/ 2 Fíjate en estos dos objetos: Los dos sirven para medir Autor:
Problemas de Variable Compleja. Soluciones. Hoja 4
Problemas de Variable Compleja. Soluciones. Hoja 4 Ejercicio.- Sobre la circunferencia C(0, /r) se verifica que Sea N N tal que para todo n N max{ e ( +! min{ e : = /r} = e /r. +... + n n! } : = r }
EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013
Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios
Microeconomía Intermedia
Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 06 Elasticidad de la demanda, el excedente
UNIDAD 1. EL PLANETA TIERRA.
UNIDAD 1. EL PLANETA TIERRA. Vivimos en un planeta llamado Tierra. Nuestro planeta está constituido por una parte sólida (tierra), formada por los continentes; por una parte líquida (agua), formada por
7.- PRUEBA DE HIPOTESIS
7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información